
Page 1

Dynamic Program Analysis

Klaus Havelund
The Automated Software Engineering Group

NASA Ames Research Center
California, USA

Page 2

People Contributing

Cyrille Artho (ETH Zurich, Switzerland)
Saddek Bensalem (VERIMAG, France)
Doron Drusinsky (Time Rover, USA)
Allen Goldberg (NASA, USA)
Corina Pasareanu (NASA, USA)
Grigore Rosu (Univ. of Illinois at Urbana-Champaign)
USA)
Willem Visser (NASA, USA)

Page 3

The Increased need for
Software within NASA

Systems must support remote exploration
Systems must be more autonomous
Systems must do more complex tasks

When people think of space, they think of rocket
plumes and the Space Shuttle, but the future of
space is information technology…

Daniel S. Goldin,
Previous NASA Administrator

No

Page 4

Hey Guys, this looks pretty good!
I don’t see any bugs!

The balance/combat is between:
• being complete (catching all bugs) and
• being able to scale (handle large programs).

Page 5

ASE Group Program V&V History 1997-2003

1997 1998 1999 2000

Found 5 errors in the Remote Agent
using the SPIN model checker.
Program hand-translated to a model
used by the SPIN model checker.

JPF 1
Model Checker that automatically
translates Java code to a model
used by the SPIN model checker.
Translates 80% of Java.

JPaX
Tool for monitoring temporal behavior
and finding concurrency-errors
(such as deadlocks and data-races)
during execution of Java programs.
Applies also to C and C++ programs

JPF 2
Custom made model checker for
Java programs.
Complete coverage of Java.

This talk

Complete Complete

Scales

Page 6

Dynamic Analysis

Page 7

What is Dynamic Analysis

Instrument program
Run instrumented program
Extract execution trace
Analyze execution trace

Page 8

PathExplorer

Running program

socket

Event stream

Observer

Page 9

Predictive
Analysis

PathExplorer – the Observer

Dispatcher

deadlock

datarace

temporal

paxmodules
module datarace =‘java pax.Datarace’;
module deadlock =‘java pax.Deadlock’;
module temporal =‘java pax.Temporal spec’;

end

Event
stream

warning
…

warning
…

warning
…

…

Page 10

Looking for the Foot Prints
Instead of for the Bug Itself

Page 11

Deadlock Analysis

Page 12

Two Kinds of Deadlocks

Resource deadlocks
Communication deadlocks

Page 13

Resource Deadlocks

A resource deadlock can occur when
two or more threads block each other
in a cycle while trying to access
synchronization locks (held by other
threads) needed to continue their
activities.

Page 14

Java Program with
Resource Deadlock

T1:

synchronized(R1){
..
synchronized(R2){..}
..

}

T2:

synchronized(R2){
..
synchronized(R1){..}
..

}

Deadlock: if T1 takes R1 and then T2 takes R2

Page 15

Communication Deadlocks

Full

Full

A communication deadlock can
occur when two or more threads
block each other in a cycle while
trying to communicate with each
other and buffers are either full or
empty.

We shall not consider communication deadlocks!

d d d d d

d d d d d

Page 16

Code Analysis

class Main{
Fork[] forks = new Fork[N];
..
for(int i=0;i<N;i++){

new Phisosopher(forks[i],forks[(i+1)%N];
};

}

Static analysis cannot find this problem due to the dynamic
creation of forks and the ‘%’ operator (experiment with JLint).

Philosopher:
while(count<10){

synchronized(left){
synchronized(right){count++}

}
}

Model checking works for N=20, but if program is deadlock free
(introducing gate lock) N=3 is max using 3 minutes (JPF).

Page 17

Alternative:
Dynamic Analysis (Trace Analysis)

Execute instrumented version of program and
extract “random” execution trace:

l(t1,r1) l(t1,r2) r(t2,x)l(t2,r2)w(t1,x)u(t1,r2) u(t1,r1) l(t2,r1) u(t2,r2)u(t2,r1)

T1:

long x;
synchronized(R1){

synchronized(R2){};
x = big1*big2;

}

T2:

synchronized(R2){
System.out.println(x);
synchronized(R1){};

}

Page 18

Model Checking Traces

Project trace δ on each thread, obtaining δ1 and δ2
Consider projections δ1 and δ2 as sequential
programs
Model check parallel composition of δ1 and δ2

l(t1,r1) l(t1,r2) w(t1,x)u(t1,r2) u(t1,r1)

r(t2,x)l(t2,r2) l(t2,r1) u(t2,r2)u(t2,r1)

•Deadlocking philosophers: for N=47 deadlock found in 5 minutes
•For deadlock freedeadlock free philosophers:

•for N=3 verified correct in 38 seconds
•For N=4 out of memory (1.5 GB memory)

δ1

δ2

Page 19

Some Observations

We can regard each projected trace as a transition
system – and the parallel composition of these,
called the composed transition system.
We say that a trace is deadlock free if the
composed transition system contains no deadlocks.

An execution trace can be regarded as an abstraction of
the program. Hence similarities with other work on
model checking abstractions.

Page 20

Testability: a Desirable Property

Given a property ϕ, find a property ψ that is highly
testable:

From verifying ψ on a single trace we extrapolate and conclude
about ϕ on entire program.

Definition (testable property in the ideal case) :
A property ψ is a testable property for ϕ if:

• If �δ∈ P . δ satisfies ψ then P satisfies ϕ

• If �δ∈ P . δ does not satisfiy ψ then P does not satisfiy ϕ

Example:
ϕ = deadlock freedom
ψ = cycle freedom in a lock graph

In practice we can only obtain approximations to testable
properties: extrapolation with high probability.

Page 21

Example

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

4 deadlock potentials
Only one is real

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

Guarded cycle

Thread segmented cycle

Singular cycle

Deadlock cycle!

Page 22

Execution Trace

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

l(T1,G)
l(T1,L1)
l(T1,L2)
u(T1,L2)
u(T1,L1)
s(T1,T3)
l(T2,G)
l(T2,L2)
l(T2,L1)
u(T2,L1)
u(T2,L2)
u(T2,G)
l(T3,L1)
l(T3,L2)
u(T3,L2)
u(T3,L1)
j(T1,T3)
l(T1,L2)
l(T1,L1)
u(T1,L1)
u(T1,L2)

Trace

Event format:

l(<thread>,<lock>) - lock
u(<thread>,<lock>) - unlock
s(<thread>,<thread>) - start
j(<thread>,<thread>) - join

Page 23

Classical Algorithm

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

L1 L2

4 cycles =
4 deadlock potentials reported (Visual Threads).

1 real deadlock! (3 false positives)

T3: L1 -> L2

T2: L2 -> L1

Algorithm: build lock graph and detect cycles in graph.
An edge goes from X to Y if a thread holds X while locking Y.

Page 24

Guarded Algorithm

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

L1 L2

T3,{}

T1,{G}

T1,{}

T2,{G}

1. Threads: must differ
2. Guard sets: must not overlap

Valid Cycles:

2 cycles =
2 deadlock potentials reported.

Potential 1 & 2

Algorithm: extend lock graph with labeled edges:
which thread, and set of guard locks.

Page 25

Segmented Algorithm

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

L1 L2

T3,{},(6,6)

T1,{G},(2,2)

T1,{},(7,7)

T2,{G},(4,4)

Algorithm: extend labels with segmentation information. M:
new T1().start();
new T2().start();

0 3

4

7

6

5

1

2

M

T1

T2

T3

1. Threads: must differ
2. Guard sets: must not overlap
3. Segments: must be parallel

Valid Cycles:

One potential left, the real deadlock!

Page 26

Correctness

Theorem:

For every deadlocking trace in the composed
transition system, obtained by putting projected
traces in parallel, there is a valid cycle that
reflects it.

For every valid cycle there is a deadlocking trace
in the composed transition system.

Page 27

Data Race Analysis

Page 28

Data Races

A datarace can occur between a set of 2 threads T={T1,T2} if they access
a shared variable V and there is a state of the execution where T1
can write to the variable and T2 can write to or read from the
variable without using a shared lock.

T1 T2V

Page 29

Java Program with Data Race

T1:

synchronized(R1){
sum = sum + 100;

}

T2:

synchronized(R2){
sum = sum + 50;

}

Data race: if T1 reads sum and then T2 reads sum
where after the additions are made. Result is +100 or
+50, depending on who writes first, not +150

Page 30

Data Race Algorithm

Developed by Savage et al. (Compaq) and used in Visual Threads for
Compaq platforms to work on C. Requires Compaq hardware to run.
Here made platform independent and modified to work for Java.

T1:

synchronized(R1){
sum = sum + 100;

}

T2:

synchronized(R2){
sum = sum + 50;

}

Initially: Lockset = {}
T1 executes: Lockset = {R1}
T2 executes: Lockset = Lockset ∩ {R2} = {}

Page 31

Reducing False Positives
Associate Automaton with Variable

not used

exclusive

shared

shared
modified

wr

rd (new thread)

rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action

= refinement

= also warnings

Page 32

High-Level
Data Race Analysis

Page 33

High-Level Data Races
An Example

class CoordinatePair{
int x = 0;
int y = 0;
int getX(){return x;}
int getY(){return y;}
void setX(int v){x = v;}
void setY(int v){y = v;}

}

synchronized(lock){
c.setX(1);
c.setY(2);

}

synchronized(lock){
my_x = c.getX();

}

synchronized(lock){
my_y = c.getY();

}

Thread 1 Thread 2

The two threads have inconsistent views
on the granularity of synchronization..
Thread 1 accesses x and y in one block.
Thread 2 accesses x and y in two blocks,

write x and y

read old x

read new y

inconsistent

Thread 1 Thread 2

Page 34

Low-Level versus High-Level
Data races

x

L1 L2 L2

xx y
y

Low-Level High-Level
For each variable: a lock set For each lock: a variable set (several)

y

L3
L1

L1 L2

Page 35

Higher Level Data Race in
Remote Agent

If(& not ok())
issueWarning()

update()

set()

Task

Database

Flag

Monitor

Page 36

Soundness & Completeness

False positive when:
One thread uses coarser locking that required due to
efficiency.

False negatives when:
All threads use the same

locking
Random execution trace does

not expose problem

L x y L

x

y

L

x

y
L

x

y

L
x

y

Page 37

More Examples

View ConsistencyThread 2Thread 1

x y

x y x
y

x y

x y

x y x

x y x y x

x y x y

Page 38

View Consistency

View Consistency:

∀ threads t1 and t2 •
let m be a maximal view of t1,
let v1 and v2 be two views of t2,
let v1’ = m ∩ v1,
let v2’= m ∩ v2,
then v1’ ⊆ v2’ ∨ v2’ ⊆ v1’ .

All views overlapping with another thread’s maximal
View must be subsets of each other.

Page 39

Examples Explained

View ConsistencyThread 2Thread 1

x y

x y x
y

x y

x y

x y x

x y x y x

x y x y

⊆

⊆

⊆

{x} {y}

{x} {y}

{x} ⊆ {x,y}

Page 40

Temporal Logic Monitoring

Page 41

Specification Based
Monitoring

PathExplorer – the Observer

Dispatcher

datarace

deadlock

temporal

paxmodules
module datarace =‘java pax.Datarace’;
module deadlock =‘java pax.Deadlock’;
module temporal =‘java pax.Temporal spec’;

end

Event
stream

warning
…

warning
…

warning
…

…

Page 42

Runtime Verification with
Java PathExplorer

always(A -> not C until B)

A B C B A C

observer
events

Translates into observer

Temporal logic facilitates
expression of requirements
that relate a vehicle’s states
at different time points.

Formalized temporal requirement

A

Page 43

Maude as a
Specification Language

Specification and verification system
In the OBJ family

Algebraic specification
Signatures + equations

Mixfix notation
Easy to define syntax of new logics.

Fast rewriting
Efficient semantics for monitoring.

Page 44

Future Time Temporal Logic
in Maude

Syntax – Propositional Calculus plus
o F (next) F (always) F (eventually) F U F’ (until)

Executable Semantics – Rewriting
{} : Formula x Event -> Formula (“consume” event e)

F{e} is formula that should hold after processing e

p{e} is the atomic predicate p true on e ?
(F op F’){e} F{e} op F’{e}
(o F){e} F
(F){e} F{e} ∧ (F)
(F){e} F{e} ∨ (F)
(F U F’){e} F’{e} ∨ (F{e} ∧ (F U F’))

Page 45

Example

fmod LTL is …

op _{_} : Formula Event -> Formula .

eq []X {E} = X {E} /\ []X .

eq <> X {E} = X {E} \/ <>X .

eq o X {E} = X .

eq X U Y {E} = Y{E} \/ (X {E} /\ (X U Y)) .

endfm .

P =[](green -> !red U yellow)

{green}

= (!red U yellow){green} /\ P

= (Yellow{green} \/ (!red{green} /\ !red U yellow)) /\ P

= (false \/ (true /\ !red U yellow)) /\ P

= !red U yellow /\ P

{green}

= (!red U yellow){red} /\ P

= (yellow{red} \/ (!red{red} /\ !red U yellow)) /\ P

= (false \/ (false /\ !red U yellow)

= false

= !red U yellow /\ !red U yellow /\P
= !red U yellow /\P

{yellow}

{red}

Page 46

Using “memo” to Generate
Automata Specialized to Trace

fmod LTL is
…
op _{_} : Formula Event -> Formula [memo] .
…

endfm .

P =[](green -> !red U yellow)

{green}

!red U yellow /\ P

{green}

false

{yellow}

{red}

[](green -> !red U yellow){green}
-> !red U yellow /\ P

….

Hash Table

Page 47

Code Instrumentation

Jtrek used for Java byte-code instrumentation:
Gives access to class files as abstract syntax trees
Allows to browse bytecode instructions and to insert new event
transmitting instructions.
Instrumentation is automated guided by instrumentation scripts
telling what to instrument.

Instrumentation package built on top of Jtrek:
Driven by instrumentation script, which is a set of
instrumentation rules (condition,action), where

Conditions are predicates on the static structure of the program
Actions are indications of what kind of information we want to
observe

Page 48

Generating FSM Observers

There are applications where
Little monitoring overhead is allowed (real time)
Few resources available for monitoring

Challenge: efficient and simple monitors!
Finite State Machine observers can be built from
formulae before monitoring

Lower runtime overhead
• No inferences needed
• Only some atomic predicates need to be evaluated

Higher start time overhead

Page 49

Formula (green → ¬ red U yellow)

State 1 2

BTT yellow ? 1 : green ? (red ? false : 2) : 1 yellow ? 1 : (red ? false : 2)

yellow

green

red

1

1

false 2

Y

Y

Y

N

N

N

yellow

red1

false 2

Y

Y

N

N

Monitoring Future Time Temporal Logic using Binary
Transition Trees (BTT)

Page 50

Building a Minimal BTT_FSM

Idea
Do the rewrites for all possible values of predicates
Get a finite state machine

• Nodes are LTL formulae
• Optimize using a validity checker (F ↔ F’ : one state)
• Edges are propositions
• Assign numbers to states
• Replace edges by Binary Transition Trees

Exponential, but works fine in practice

Page 51

Use of BTT FSM Generation

Inline version of JPaX expands comments like

/* JPaX: after green comes yellow
Atom red = tlc.state.getColor() == 1;
Atom green = tlc.state.getColor() == 2;
Atom yellow = tlc.state.getColor() == 3;

Formula : [](green -> (! red U yellow));
*/

into code that throws an exception when formula is violated

try{
switch(bttFsmState) {

case -1: break;
case 1: bttFsmState = tlc.state.getColor() == 3 ? 1 :

tlc.state.getColor() == 2 ?
tlc.state.getColor() == 1 ? 0 : 2 : 1; break;

case 2: bttFsmState = tlc.state.getColor() == 3 ? 1 :
tlc.state.getColor() == 1 ? 0 : 2; break;

}
if(bttFsmState == 0) throw new Exception("Prop. Failure");

}
catch(Exception e){ ... };

Page 52

Past Time Temporal Logic

specification
P = start(p) -> [q,end(r|s));

end

F ::= true | false | Id
| not F | F implies F | F and F | F or F | (F)
| [F,F) | start(F) | end(F)

implies

start

p

[_,_)

q end

|

sr

0

1

2

3

4 5

6

7 8

boolean pre[9];
boolean now[9];

now[2] = holds(p);
now[1] = now[2] && !pre[2];
now[4] = holds(q);
now[7] = holds(r);
now[8] = holds(s);
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[3] = (pre[3] || now[4])

&& !now[5];
now[0] = !now[1] || now[3];
if(now[0]==0)print(“error”);
pre = now;

Page 53

Result of Translation is the
“Formulae” Java Class

public class Formulae{
abstract class Formula{
protected String name;
protected boolean[] pre;
protected boolean[] now;
protected State state;

public Formula(String name,State state){
this.name = name; this.state = state;

}

public string getName(){return name;}

public abstract boolean evaluate();
}

private List formulae = new ArrayList();

…

Page 54

The “Formulae” Class

public void evaluate(){
Iterator it = formulae.iterator();
while(it.hasNext()){
Formula formula = (Formula)it.next();
if(!formula.evaluate())
System.out.println(“Property “ + formula.getName() + “ violat

};
}

class Formula_P extends Formula{
…

}

public Formulae(State state){
formulae.add(new Formula_P(state));

}
}

Page 55

The “Formulae” Java Class

class Formula_P extends Formula{
public boolean evaluate(){
now[2] = state.holds(“p”);
now[1] = now[2] && !pre[2];
now[4] = state.holds(“q”);
now[7] = state.holds(“r”);
now[8] = state.holds(“s”);
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[3] = (pre[3] || now[4]) && !now[5];
now[0] = !now[1] || now[3];
System.arraycopy(now,0,pre,0,9);
return now[0];

}

public Formula_P(State state){
super(“P”,state);
pre = new boolean[9];
now = new boolean[9];

}
}

Page 56

Test Case Generation and
Dynamic Analysis

Page 57

Automated Test Environment for
the Planetary Rover K9

K9
executes plan

Plan
Generation

Property
Generation

Trace
Analysis

Program
Instrumentation

Simulator

trace

propertiesplan

plan

Page 58

Plan Grammar

Plan → Node
Node → Block | Task
Block → (block NodeAttr

:node-list (NodeList))
NodeList → Node NodeList | ε
Task → (task NodeAttr

:action Symbol
[:fail]
[:duration DurationTime])

NodeAttr → :id Symbol
[:start-condition Condition]
[:end-condition Condition]
[:continue-on-failure]

Condition → (time StartTime EndTime)

Page 59

Example of Plan

(block :id plan
:continue-on-failure
:node-list (
(task :id drive1

:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1
:duration 20

)
(task :id drive2

:end-condition (time +10 +16)
:action BaseMove2
:fail

)
))

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail

Page 60

Plan Generation

class UniversalPlanner { …
static int nNodes = 0;
static int tRange = 10;

static void Plan(int nn, int tr) {
nNodes = nn; tRange = tr;
Node plan = UniversalNode();
print(plan);
assert(false);

}

static Node UniversalNode() {
if(nNodes == 0) return null;
if(Verify.chooseBool()) return null;
if(Verify.chooseBool())

return UniversalTask();
return UniversalBlock();

}

static NodeAttr UniversalNodeAttr() { … }

static Node UniversalTask() {
NodeAttr na = UniversalNodeAttr();
Symbol action = new Symbol();
boolean fail = Verify.randomBool();
int duration = Verify.random(tRange);
Task t = new Task(na, action, fail, duration);
nNodes--;
return t;

}
static Node UniversalBlock() {

NodeAttr na = UniversalNodeAttr();
nNodes--;
ListOfNodes l = new ListOfNodes();
for(Node n=UniversalNode(); n!=null; n=UniversalNode())

l.addNode(n);
Block b = new Block(na,l);
return b;

}

Page 61

Plan Properties

◊ start(plan)

□ (start(plan) → ◊1,5 start(drive1))

□ (start(drive1)→(◊1,30success(drive1) ∨ ◊fail(drive1)))

□ (success(drive1) → ◊ start(drive2))

□ (end(drive2) → ◊ success(plan))

◊ success(drive1)

◊ fail(drive2)

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail

Page 62

“Demo” of K9-Explorer

Page 63

Workshop

Third International Workshop on

Runtime Verification

CAV’03
July 13, 2003

Boulder, Colorado
USA

RV’03

http://www.cis.upenn.edu/rv2003/

Page 64

Workshop

Fourth International Workshop on

Runtime Verification

ETAPS’04
April 3-4, 2004

Barcelona
Spain

RV’04

Page 65

Aspect Oriented Programming
for Testing and Debugging

Robert E. Filman Klaus Havelund
RIACS Kestrel Technology

rfilman@mail.arc.nasa.gov havelund@email.arc.nasa.gov

NASA Ames Research Center
Moffett Field, CA 94035 U.S.A.

Page 66

Static and Dynamic Quantification

In earlier papers, distinction between
Static quantification: discernable from the syntactic structure
of the specimen program

• E.g, calls

Dynamic quantification: matching events that happen in the
course of program execution.

• E.g., cflow

Coming to the belief that almost all interesting “events” are
dynamic, and that static quantification merely refers to those
events that can be simply inferred from the static structure
of the program.

Page 67

Events and Event Loci

Event Syntactic locus
Accessing the value of a variable or
field

References to that variable

Modifying the value of a variable or
field

Assignments to that variable

Invoking a subprogram Subprogram calls
Cycling through a loop Loop statements
Branching on a conditional The conditional statement
Initializing an instance The constructors for that object
Throwing an exception Throw statements
Catching an exception Catch statements
Waiting on a lock Wait and synchronize statements

Page 68

More Events and Loci

Event Syntactic locus
Resuming after a lock wait Other's notify and end of

synchronizations
Testing a predicate on several fields Every modification of any of those

fields
Changing a value on the path to
another

Control and data flow analysis over
statements (slices)

Swapping the running thread Not reliably accessible, but
atomization may be possible

Being below on the stack Subprogram calls
Freeing storage Not reliably accessible, but can try

using built-in primitives
Throwing an error Not reliably accessible; could

happen anywhere

Page 69

Research regime

Define a language of events and actions on those
events.
Determine how each event is reflected (or can be
made visible) in source code.

Its shadow

Create a system to transform programs with
respect to these events and actions.

Page 70

Transformational Alternatives

For Java, can transform at
The source-code level
The byte-code level

Page 71

Architectural View

Source Java
code

Source Java
code

Event-action
descriptions

Event-action
descriptions

Event-
Edit

compilation

TransformTransform

AST

Target Java
code

Target Java
code

Parse PrettyPrint

Page 72

Applications

Applying AOP to debugging and validating
concurrent programs.
Applying AOP to monitor programs during operation,
so that actions can be initiated in case bad things
happen.
Applying AOP as a general programming paradigm.

Page 73

Program Debugging

Detect multi-threading problems caused by access
to shared resources by competing threads.
Validate trace executions against user
requirements.
Validate multithreaded programs by exploring
schedule interleavings.

Page 74

Detect
Multi-threading Problems

Deadlocks: Observe in what order locks are taken
and released and infer potential deadlocks from
cycles.
Data Races: Observe what locks threads own when
they access variables and infer potential data races
from empty overlaps.

Page 75

Applying AOP

aspect DeadlockDetection{
when synchronize(obj){

Thread curr = Thread.currentThread();
Set locks = Threads.getLocks(curr);
Graph.addEdges(locks,obj);
Graph.findCycles();
Threads.addLock(curr,obj);

}
when endof synchronize(obj){

Threads.remove(curr,obj);
}

}

Page 76

Applying AOP

aspect DataraceDetection{
when synchronize(obj){

Thread curr = Thread.currentThread();
Threads.addLock(curr,obj);

}
when endof synchronize(obj){

Thread curr = Thread.currentThread();
Threads.remove(curr,obj);

}
when accessto(var,isWrite){

Thread curr = Thread.currentThread();
Statemachine.update(curr,var,isWrite);
Statemachine.checkEmptyness(var);

}
}

Page 77

Validating Execution Traces Against
User Requirements

aspect CheckRequirements{
when(CLOSED and not previously DO_CLOSE){

Report(“System closed by itself”);
}
whennot(DO_CLOSE implies

eventually(20)CLOSED){
Report(“System did not close”);

}
}

CloseSystem(); // repair

Page 78

Explore Scheduling

Simple example: assume that all variable accesses are
protected with locks.
Insert a call of a randomized yield statement in front of all
synchronization statements and calls of synchronized
methods.
This will cause the scheduler to randomly make a context
switch whenever a lock is taken. This may be used, for
example, to reveal deadlocks.

Page 79

An Evaluation

Page 80

FSW Verification Tool Comparison

10 Oct 2002

Peter R. Glück
Jet Propulsion Laboratory

Page 81

User Impressions
Tool JPAX JPF Polyspace DBRover
Impressions - A wonderful tool!

One of the most
helpful tools seen in a
long time.
- All of the problems
found were the type
that would have taken
months to find
because they were
intermittent.
- Found stuff we didn't
know about tha
timproved the
robustness of the
application (with less
than 4 hours total time
invested).

- Easy to create a
dumb, non-
deterministic
environment, but it
may be harder to filter
out unrealistic
scenarios in a real
project.
- You have to
manually put in atomic
regions, which may
not be trival in a real,
multi-threaded
application.
- It takes some amount
of manual
specification, which
should be done at the
requirements stage.

- The main hurdle is
setting it up. The rest is
pretty nice.
- Liked the GUI and
the display capabilities.
- Color coding and
filtering are good.
- Very easy to use
once configured.

- If you can formally
specify a FSW
property in LTL and
are able to inject it into
the application code,
then it excels as a very
powerful run-time
assert statement.
- The simulator was
essential. Without it it
would have been
much harder to
validate the
correctness properties.
This was a time-saver.
- It is nice that it
monitors multiple
correctness properties
simultaneously.

